Laboratório portátil especialmente para uso de mineralogistas, adaptado às técnicas da micro-análise

POR ISABEL MARIA MELEÇAS GAGO

(Eng.ª Químico-Industrial I. S. T. e Assistente do I. S. T.)

(Conclusão)

C. D 622 1:549

IV — OBSERVAÇÕES E DADOS DE ORDEM PRÁTICA

Nas notas que adiante se seguem para o reconhecimento dos elementos nos minérios e minerais, vão indicadas várias técnicas (¹) todas baseadas nos métodos aqui descritos e cuja aplicação se fará conforme os casos.

Não se seguiu qualquer pesquisa ordenada, isto é, qualquer ideia de sistematização; as pesquisas neste campo têm por especial objective, ou confirmar hipóteses, ou decidir os casos indecisos, e nesses casos procurar os principais constituintes dum mineral, os únicos que geralmente interessam; e ainda caracterizar impurezas que possam interferir no seu posterior tratamento. De resto os caracteres macroscópicos: cor, brilho, risca, faces de clivagem, sistema de cristalização fornecem por si só indicativo muitas vezes suficiente da possível espécie à qual o exemplar pertence; uma única reacção se emprega como distintivo característico do grupo: a caracterização dos sulfuretos.

A escolha da técnica a seguir para um reconhecimento está condicionada pela facilidade de ataque, estado de agregação do mineral, associação, pureza, etc.; pelo interesse na conservação da amostra e até pela simpatia do operador por este ou aquele método.

Podem seguir se outras técnicas e outros métodos tantas são já as reacções conhecidas para cada elemento.

Aquelas aqui apontadas foram escolhidas de acordo com os princípios de simplicidade,

rapidez, eficiência e mínimo de reagentes a empregar; entre estes procurou-se em especial escolher alguns que permitissem caracterizar mais de um elemento, para não sobrecarregar o laboratório.

Sempre que foi possível escolheram-se reacções sobre papel, porque estes são muito fáceis de transportar além de muito cómodos e vantajosos na sua utilização.

A) Cuidados a observar durante o trabalho

Para se conseguirem bons resultados é necessário atender os seguintes pontos essenciais:

1) Todo o material deve estar rigorosamente limpo: — De vez em quando desengordurar o material de vidro e porcelana com mistura cromo-sulfúrica ou vapores nitrosos (álcool e ácido azótico).

Lavar em seguida com água e enxugar a um trapo limpo

2) Antes de se fazer a reacção sobre a placa, convém limpar o «godet» com um pedaço de algodão hidrófilo embebido no reagente que se vai utilizar.

3) Antes de se proceder a um ataque por contacto, escovar a amostra com um pincel para sacudir a terra, lavar seguidamente com água se necessário; passar por último com um algodão hidrófilo embebido em álcool.

Utilizar de preferência faces recentes.

4) N. B. Ao utilizar o almofariz de Abich, certificar-se de que estava completamente livre do pó da amostra anterior; raspar com um estilete e escovar em seguida com um pincel; «lavar» o almofariz com a própria substância a

⁽¹⁾ Algumas destas técnicas encontram-se descritas no livro de F. Feigl (loc. cit.) outras constituem uma adaptação ao caso dos minerais, de reacções já estudadas.

analisar, isto é triturar uma pequena quantidade da amostra e deitá-la fora, aproveitar para o ensaio, sòmente uma nova quantidade.

Ao trabalhar no campo:

5) Instalar o laboratório de preferência perto de água (necessária à lavagem do material).

6) Colocar o laboratório contra o vento de modo que a chama da lamparina e os vapores ácidos, não sejam arrastados para dentro dele.

7) Conservar sempre fechadas as portas das divisórias para evitar as poeiras.

8) Antes de fechar o laboratório limpá-lo das poeiras que tenham entrado.

B) «Técnicas» para o reconhecimento dalguns elementos nos minerais (1)

ALUMÍNIO

I — Método de pesquisa — Dissolução, seguida de reacção.

 $Reagentes \left\{ \begin{array}{l} \text{Papel de quinalizarina ou} \\ \text{N.° 20 } \text{— Quinalizarina (Solução diluída em} \\ \text{OHNa} \sim \text{N recentemente feita)} \\ \text{N.° 30} \text{— OHAm} \sim 3 \text{ N} \\ \text{N.° 31} \text{— Ácido acético} \sim 2 \text{ N.} \end{array} \right.$

Condições — Meio amoniacal.

Técnica — 1) Fundir alguns mg de minério com CO3Na K em cadinho (ou colher) de platina.

Dissolver com gotas de ClH concentrada em vidro de relógio.

 Evaporar o ácido quase à secura; juntar 1 ou 2 gotas de água e encher uma pipeta capilar com o líquido sobrenadante.

Aplicar a pipeta sobre o papel de quinalizarina.

 Expor aos vapores de amoníaco (ou juntar 1 gota de OHAm) com pipeta capilar.

 Expor aos vapores de ácido acético (ou juntar 1 gota de ácido).

Em presença de Al, aparece mancha rosada (o reagente toma cor amarelo--rosada).

Ou doutro modo:

1) Fundir o minério com OHNa (cadinho de prata); dissolver com gotas de água a quente.

2) Tirar uma gota do líquido sobrenadante; coloca-la sobre papel Whatmann (ou no «godet» da placa de porcelana); expor aos vapores de amoníaco (ou juntar 1 gota de amónia).

3) Adicionar 1 gota de quinalizarina (so-

lução em OHNa díluída).

 Juntar 1 gota de ácido acético; em presença de Al aparece cor rosada, que contrasta com a cor do reagente em meio ácido.

Sensibilidade | 0,005 γ de Al da reacção | 1/2.000.000

II - Método de pesquisa - Electrografia.

Reagentes — Os mesmos do que anteriormente. Electrólitos — Papéis de ClK e de quinalizarina.

Técnica −1) No dispositivo de electrólise colocar o papel de CIK e de quinalizarina e o minério. Deixar passar a corrente ~5 minutos.

> Expor o papel aos vapores de àmoníaco e juntar gotas de ácido acético.
> Em presença do alumínio aparece cor rosada.

ANTIMÓNIO

I - Método de pesquisa - Ataque seguido de reacção.

 $\label{eq:Reagents} Reagentes \left\{ \begin{array}{l} \rm N.^{\circ} \quad 4 - Rodamina \; B \\ \rm N.^{\circ} \; 34 - \rm NO_{3}H \; conc. \\ \rm N.^{\circ} \; 33 - C1H \; conc. \end{array} \right.$

Condições — Meio fortemente cloridrico.

Antimónio ao máximo (oxidar com NO₂K ou com NO₃H, se for preciso).

Ataque -- Para grandes quantidades, contacto ácido sobre papel -- Pequenas quantidades -- dissolver com ácido.

Técnica — 1) Sobre papel lançar uma gota de NO₃H conc. e apertar de encontro ao min.º (ver pág. 797) ~ 2 min. (ou dissolver se preciso).

 Juntar 1 gota de C1H conc. e aquecer levemente sobre lâmina de vidro até eliminar todo NO₃H.

 Deixar esfriar e deitar 1 gota de rodamina.

Nos pontos em que o m.º foi atacado aparece cor violácea.

Sensibilidade { 0,5 γ Sb Na presença de 12.500 partes da reacção { 1/100.000 de Sn

Interferências Hg, Au, Cl₂Tl, Cl(BiO) Molibdatos, tungstatos.

⁽¹⁾ A «sensibilidade» das reacções é aqui representada, segundo a notação de F. Feigl, pelos valores: limite de identificação e limite de diluição.

I - Método de pesquisa - Electrografia

Reagentes -- Os mesmos do que anteriormente.

Electrólitos - Papeis de ClK e rodamina B.

Condições - Ver método anterior.

- Técnica 1) Colocar no dispositivo de electrolise: papel de ClK, e papel de rodamina ao qual se junta uma gota de ClH conc. e um pedaço de min.º (não pulverizado).
 - 2) Deixar passar corrente durante 5 min.
 - 3) Colocar o papel de rodamina sobre lâmina de vidro; juntar mais 1 gota de ClH conc., 1 grão de NO₂K e agitar e aquecer levemente até libertar todo NO₂. Deixar esfriar.
 - 4) Juntar 1 gota do reagente Na presença de Sb aparece cor violácea.

ARSÉNIO

I — Método de pesquisa — Dissolução seguida de reacção sobre papel.

 $Reagentes - \left\{ \begin{array}{l} {\rm Papel\ de\ Cl_2Sn\ (Solução\ de\ Cl_2Sn\ em\ ClH)} \\ {\rm N.^{\circ}\ 33\ ClH\ conc.} \end{array} \right.$

Condições — Meio fortemente clorídrico; ausência de No₃H (e outros oxidantes).

Técnica — 1) Dissolver alguns mg de min.º com ácido ClH ou SO₄H₂.

> 2) Juntar uma gota de ClH; encher uma pipeta capilar c/o líquido e aplicá-lo ao papel de Cl₂Sn recentemente feito (embeber papel na solução de Cl₂Sn). Aquecer este levemente.

Em presença de As aparece mancha acastanhada ou precipitado negro.

II — Método de pesquisa — Electrográfica

Electrólitos - ClK, Cl2Sn ou SZn (papéis de).

Técnica — 1) No dispositivo de eloctrólise colocar os papéis de ClK e SZn (1) e um pedaço de min.º.

Deixar passar a corrente ~ 2 – * min. Em presença de As forma-se mancha amarela.

 Com o papel de Cl₂Sn (em meio CIH forma-se mancha de cor castanha mais ou menos carregada.

Aquecer o papel levemente para acelerar a redução.

BERÍLIO

I — Método de pesquisa — Dissolução seguida de reacção

Reagentes — Quinalizarina (0,05 %) em OHNa 0,1 N) (recentemente feita).

Condições - Meio alcalino

(i) O papel de SZn só é aconselhável na ausência de Cu++ $\hat{A}g+$, Hg++, Bi+++, Cd++Au, +++, Pt++, Sb+++ ou Sb+++, Pb+++.

Tecnica — 1) Fundir alguns mg de min.º com OHNa (¹) (isenta de CO₃) em cadinho de prata.

Dissolver em água (~1/2 ml e do líquido sobrenadante tirar com uma pipeta capilar, 1 gota para o godet da placa de porcelana.

 Juntar uma gota da solução de quinalizarina.

Em presença de Be aparece uma coloração ou pp. azul claro vivo (análogo ao de Mg).

Notas — a) O reagente em presença da OHNa é azul violeta com pequenas quantidades de Be é conveniente fazer ensaio em branco.

b) Quando haja grande quantidade de Al presente o líquido toma um tom rosado; no entanto a cor azul do Be, quando em quantidades apreciáveis é ainda visível.

Sensibilidade $\begin{cases} 0,14 \text{ } \gamma \text{ Be} \\ da \text{ } reacção \end{cases}$ 1/353.000

II — Método de pesquisa — Electrografia Electrolitos — CIK, CIH conc.

Reagentes $\left\{ egin{array}{ll} {
m Quinalizarina} & {
m (sol.~em~OHNa} \sim 2{
m N} \\ {
m OHA} & \sim 3{
m N} \end{array} \right.$

Técnica — 1) Colocar no dispositivo de electrolise o papel de ClK, num papel com 1 gota de ClH conc. ou SO₄ H₂ 2N e o mineral.

Deixar passar a corrente ~ 5 min.

- Mergulhar o papel que esteve em contacto com o minério em OHAm ~ 3N (para neutralizar o ácido).
- Colocar o papel sobre uma lâmina de vidro e juntar 1 gota do reagente (preparado nessa altura).

Em presença de Be o papel aparece azul claro nos pontos onde o minério foi atacado.

BORO

I — Método de Pesquisa — Ataque seguido de reacção.

Reagente $\left\{ egin{array}{ll} {
m Papel de Curcuma} \\ {
m OHNa} \sim {
m O,25N} \end{array} \right.$

Condições - Meio alcalino.

Técnica – 1) Fundir alguns mg de minério com OHNa (em cadinho de prata). Deixar esfriar e dissolver em água.

- Deixar repousar e do líquido sobrenadante tirar uma gota para um vidro de relógio; acidificar com ClH.
- Encher uma pipeta capilar com este líquído e colocar uma gota sobre papel de curcuma.

Em presença de Bo₃≡ aparece nma mancha vermelho acastanhada (Fe, Mo, Pi, Cb, Ta, Zn, Sb dão esta reacção).

⁽¹⁾ Deste modo faz-se a separação de Mg o qual também reage om a quinalizarina dando a mesma cor. Ver pesquisa de magnésio.

Juntar uma gota de OHNa dil. A mancha deve tomar um tom azul para verde escuro (dif. com as interferências).

Sensibilidade $\begin{cases} 0.02 \text{ y B.} \\ da \ reacção \end{cases}$ 1/2.500.000.

CHUMBO

I — Métodos de pesquisa — Electrografia (1).

Reagentes — Papel de NO₃Am ou ClK e de SZn ou CrO₄Ba (Electrólitos).

Técnica — 1) Colocar sobre os papéis humedecidos, um pequeno pedaço de minério e ligar a corrente, durante 1 a 2 minutos.

> 2) Nos pontos em que o minério foi «atacado» aparece em presença de Pb:

Com SZn — mancha acastanhada ou negra.

Com CrO4Ba — amarelo claro.

II — Método de pesquisa — Dissolução seguida de reacção.

Reagentes N.º 30 Agua de Bromo N.º 30 OHAm 1:1 N.º 33 OHNa ~ 2N CIH conc.

Condições — Meio amoniacal.

Técnica — 1) Colocar sobre papel 1 gota de CIH conc. aquecido e apertar de encontro ao minério (ou dissolver em CIH conc. em cada se preciso).

> Tratar alternadamente o papel com gotas de OHNa 2N e água de Bromo, por meio de pipetas capilares (3 vezes).

> Mergulhar o papel em OHAm 1:1 até todo Br ser destruído; aquecer levemente o papel até não cheirar à OHAm.

4) Juntar 1 gota de Benzidina.

Em presença de Pb aparece cor azulada que se desvanece fàcilmente com pequenas quantidades de Pb.

Interferências — Mn, Ce, Bi, Tl, Ag, Au, Cu e oxidantes (CrO₄=, ferri e ferrocianetos, etc.

Notas — a) Com os minérios sulfurados é preferível empregar ClH a NO₃H para que se não forme SO₄Pb.

Depois de dissolvido o minério, tirar uma gota do líquido quente com uma pipeta capilar e colocá-la sobre papel.

Proceder então como em (2), etc.

b) Quando se suspeite a presença de Mn e Cu, proceder do seguinte modo:

Depois de dissolver o minério em ClH conc., neutrali-

(1) O papel de SZn só é aconselhável na ausência de certos elementos: ver arsénio.

zar o líquido com OHNa e juntar grande excesso de OHNa (¹).

Do líquido sobrenadante tirar uma gota e proceder como em (2).

COBALTO

I — Método de pesquisa — Dissolução seguida de reacção

Condições - Ausência de NO₃H.

Técnica — 1) Dissolver (ou fundir se necessário) alguns mg de minério com ácido.

Se se empregar NO₃H, eliminá-lo completamente, levando à secura com gotas de CIH conc.

Retomar com 2 gotas de água; do líquido sobrenadante, tirar com uma pipeta, uma gota para o godet da placa.

Eliminação da interferencia do Fe+++

Em presença do cobalto aparece cor azul ou pp. cristalino azul.

Sensibilidade 0,06 y Co++ da reacção 1/1.000.000

Interferências — A reacção pode considerar-se específica se bem que alguns outros iões também reajam com o tiociancto (²); porém dão colorações diferentes.

Os iões fortemente corados e em grande quantidade mascaram a reacção devido à própria coloração.

II — Método de pesquisa — Electrografia.

Reagentes — Os mesmos do que anteriormente.

Electrólitos — Papéis de CIK e tiocianeto de mercúrio + + FNa.

Técnica — 1) No disposítico de electrólise colocar o papel (ou algodão) de ClK humedecido, e papel impregnado de tiocianeto de mercúrio sobre o qual se estende pequena camada de FNa sólido; colocar sobre este o mineral (não pulverizado) e deixar passar a corrente ~ 2-5 minutos.

 Retirar o 2.º papel, adicionar-lhe 1 gota de ClHconc. + 1 gota do reagente e

(1) Em presença de cobalto e excesso não deve ser tão grande que dissolva o (OH), Co.

(?) — a) Se existirem grandes quantidades de cobalto (o que se reconhece pela côr da solução) a reacção dá-se mesmo sem se juntar Zu $^++$.

b) Se com quantidades moderadas de cobalto, aparecer imediatamente coloração azul, mesmo sem adicionar Zu $^++$, deve suspeitar-se da presença de Zu $^+-$ na solução.

1 gota da solução de Zn++; agitar com uma vareta. Ao fim de algum tempo (2 a 10 minutos) as fibras do papel tomam coloração azul mais ou menos acentuada.

COBRE

I — Método de pesquisa — Dissolução seguida de reacção.

 $Reagentes - \left\{ \begin{array}{l} \text{Papel de FeCy}_6 \text{Zn}_2 \\ \text{N} \cup_3 \text{H conc.} \\ \text{ClH conc.} \end{array} \right.$

Condições - Meio clorídrico.

Técnica — 1) Atacar alguns milig. de minério finamente pulverizado, com NO₃H conc. (~1/2 ml).

> — Em presença de quantidades apreciáveis de Cu aparece côr verde azulada.

 Evaporar o excesso de NO₃H e juntar 1 gota de ClH conc., evaporar um pouco o excesso de ácido e encher 1 pipeta capilar com esta solução.

3) Ensaiar sobre papel FeCy6Zn2.

Em presença de Cu obtém-se um pp. castanho avermelhado junto ao bico da pipeta, rodeado geralmente por uma auréola azul devida ao ferro.

Em presença de grandes quantídades de ferro lavar a mancha azul com uma pipeta capilar cheia de água. O azul é arrastado para a periferia deixando a descoberto a mancha castanho-avermelhada de Cu.

Interferências (1) — Urânio.

4) Neste caso lavar a mancha com uma pipeta capilar com OHAm. Se a mancha castanho-avermelhada for de Cu, passará a azul (notar então que a mancha azul passa a castanho).

Em presença de urânio a mancha castanha passa a amarelo.

II - Método de pesquisa - Electrografia.

Electrólitos — Papéis de SO₄K₂ e FeCy₆Zn₂.

Técnica — 1) No dispositivo de electrólise colocar os 2 papéis electrólitos humedecidos com água e em seguida o minério.

Deixar passar a corrente 1/2 a 2 min. Em presença de cobre aparece sobre papel mancha castanho avermelhada de ferrocianêto de cobre, às vezes rodeada ou misturada com a cor do azul do ferro.

CRÓMIO

I — Método de pesquisa — Fusão seguida de reacção.

Reagentes { N.º Difenilcarbazida SO₄H₂ 1:1

Condições — Meio sulfúrico (ou clorídrico).

Técnica — 1) Fundir alguns mg de minério com 4 vezes a mesma quantidade duma mistura em partes iguais de O₂Na₂ e CO₃KNa (ou mesmo só O₂Na₂).

2) Dissolver com gotas de SO₄H₂ 1:1.

 Colocar na placa uma gota da solução anterior e uma gota de difenilcarbazida. Em presença de Cr, forma-se cor vermelho de cravo.

Nota — Quando se suspeita da presença de molibdatos juntar ácido oxálico antes do reagente.

 $\begin{array}{c} \textit{Sensibilidade} \\ \textit{da reacção} \end{array} \left\{ \begin{array}{c} 0.8 \ \gamma \ \text{Cr} \\ 1/625.000 \end{array} \right.$

Interferências — Hg, Molibdatos, Vanadatos.

ESTANHO

I — Método de pesquisa — Fusão seguida de reacção sobre papel

Reagentes — Papel de cacotelina (feito na ocasião).

Condições — Meio ácido (ClH).

Técnica - 1) Alguns mg. fundidos com CyK + + CO₃NaK.

Deixar esfriar e dissolver em ClH conc.; aquecer.

2) Impregnar um papel com cacotelina; antes deste secar completamente, aplicar uma pipeta capilar com o soluto anterior. Na presença de Sn forma-se mancha de cor violácea que tende a espraiarse.

Interferências — Redutores (S=, S_2O_3 =, Sb+++, Fe++ quando em presença de \overline{F}^- ou S_2O_3 =)

 $\begin{array}{c} Sensibilidade \\ da \ reacção \end{array} \left\{ \begin{array}{c} 0.2 \ \gamma \ Sn \\ 1/250.000 \end{array} \right.$

Nota — Em presença de Sb e As é preferível calcinar primeiro o minério.

FERRO

I — Método de pesquisa — Dissolução seguida de reacção

 $\mathit{Reagentes} \left\{ \begin{array}{l} \mathrm{Papel} \ \mathrm{de} \ \mathrm{FeCy_6Zn_2} \\ \mathrm{ClH} \ \ \mathrm{conc.} \end{array} \right.$

Condições — Meio clorídrico.

Técnica — 1) Dissolver (¹) o minério e encher uma pipeta capilar com o líquido resultante da dissolução.

> Sobre uma lâmina de vidro, colocar um papel de FeCy₆Zn₂ e apoiar sobre ele a pipeta capilar.

Sobre o papel de FeCy₆Znz a sensibilidade da reacção do urânio é muito pequena; apenas se forma ténue coloração castanho avermelhada.

Grandes quantidades de cu dão mancha verde.

⁽¹⁾ O processo de ataque depende do minério. Para aqueles muito fàcilmente solúveis basta o contacto ácido sobre papel (processo «sandwich»).

Quando o minério é diferentemente atacável convém pnlverizar e dissolver em cadinho de porcelana com ácidos ou fundentes se necessário.

Em presença de Fe forma-se mancha intensamente azul (conforme a concentração em Fe+++) que tende a espraiar-se.

II — Método de pesquisa — Electrografia

Electrólitos — Papéis de SO₄K₂ e FeCy₆Zn₂.

Técnica — 1) No dispositivo de electrólise colocar os papéis humedecidos com água, em seguida um pedaço de minério.

> Nos pontos em que o minério foi atacado formam-se manchas azuis.

FOSFATOS

I — Método de pesquisa — Reacção sobre o mineral

I.º 3 — Benzidina

Reagentes

N.° 2 — Molibdato de Am.°

N.° 13 — Tartarato de amónio (²) (para impedir a reacção de SiO₃≡)

N.° 28 — Acetato de sódio

Condições — Reagente aquecido; meio azótico.

Tecnica - 1) Colocar sobre o papel 1 gota de NO₃H conc., aquecer o papel sobre vidro de relógio e apertar de encontro ao minério pulverizado (de preferência) durante alguns minutos.

2) Juntar uma gota de reagente n.º 2 em solução tartárica (conc.) aquecido.

Em presença de grandes quantidades de PO₄≡ o papel fica amarelo; é o suficiente para o reconhecimento.

Caso contrário juntar 1 gota de benzidina e em seguida gotas de acetato de sódio.

Nos pontos correspondentes ao ataque do minério o papel apresenta manchas azuis.

FLUORETOS

I — Método de pesquisa — Ataque seguido de reacção.

 $Reagentes \left\{ \begin{array}{l} N.^{\circ} \ 2 \ Molibdato \ de \ Am.^{\circ} \ (solução \ azótica) \\ N.^{\circ} \ 28 \ Acetato \ de \ sódio \\ N.^{\circ} \ 17 \ Silica \ em \ pó \\ N.^{\circ} \ 5 \ SO_{4}H_{2} \ conc. \end{array} \right.$

Condições — Ausência de água.

Técnica - 1) Num cad. de Pt. colocar 1 mg de mineral, juntar 1 mg de SiO2 (se o mineral a não contém ou a tem em pequena quan-

(1) A mesma reacção se pode fazer, aquecendo o mineral e lançando sobre ele os reagentes; o minério fica azul depende do tempo

Ou ainda: fazer uma ranhura no mineral e nela deitar uma gota de NO_nH conc.; lavar o ácido para o godet da placa e fazer a reacção antèrior.

tidade) e colocar sobre ele um vidro de relógio inferiormente parafinado contendo em suspensão 1 gota de água.

2) Em presença de grandes quantidades de F a gota fica turva o que basta para reconhecimento.

Quando houver pequenas quantidades: passar a gota para o «godet» da placa, arrastando-a com jacto de água; juntar 2 gotas de reagente n.º 2 e se aparecer cor amarela está caracterizado F; caso contrário juntar 2 gotas de benzidina e reagente n.º 28 até ao dobro do volume existente.

Em presença de F aparece cor azul.

MAGNÉSIO

I — Método de pesquisa — Dissolução seguida de reacção.

 ${\it Reagentes} \left\{ \begin{array}{l} {\rm N.^{\circ}~20~Quinalizarina~(solução~em~OHNa,} \\ {\rm recentemente~feita)} \\ {\rm OHNa \sim 0,1~N} \\ {\rm N.^{\circ}~\acute{A}gua~de~Bromo} \end{array} \right.$

Condições — Meio alcalino.

Técnica — 1) Fundir o minério com CO3NaK e dissolver com gotas de ClH conc. Evaporar o ácido quase à secura.

2) Juntar 1 gota de água e desta solução tirar 1 gota para o «godet» da placa.

Juntar 2 gotas de reagente (a solução toma cor amarela devido ao ácido).

Deitar gota a gota OHNa O,lN até a cor virar para violeta e juntar mais OHNa (cerca de metade do volume ante-

3) Em presença de Mg forma-se coloração ou pp. azul claro.

O berílio dá a mesma reação; a distinção pode fazer-se do seguinte modo:

Na hipótese de estar presente apenas Mg ou Be

4) Juntar ao precipitado um pouco de água de bromo; se a cor se mantém é devida a Mg; se desaparece é devida a Be.

Na hipótese de estarem ambos presentes

5) Proceder como em (4) e em seguida: Repetir as reaccões desde (2) juntando OHAm ~ 2N em vez de OHNa; em seguida juntar água de bromo.

Se a cor azul se mantiver é devida

Se desaparece é devida a Mg.

Sensibilidade | 0,25 y Mg da reacção | 1/200.000

Interferências — Alumínio (só em quantidades muito grandes dando coloração rósea). Be e terras raras.

II - Método de pesquisa - Electrografia

Reagentes — Cs mesmos que anteriormente

Electrólitos - CIK, CIH conc.

Técnica — 1) Colocar um pedaço de mineral ou pó sobre papel onde se tenha lançado 1 gota de ClH conc. Deixar passar a corrente 5 minutos.

> Mergulhar em seguida o papel em OHNa ~ 2N e colocá-lo sobre lâmina de vidro.

Deitar sobre o papel 1 gota da solução de quinalizarina recentemente feita dissolvendo 1 cc de OHNa 2N.

 Nos pontos correspondentes ao ataque do mineral formam-se manchas ou grânulos azuis que caracterizam Mg.

(O reagente difunde-se pelo papel num tom violáceo para azulado perfeitamente distinto da cor de Mg.

Nota — O ferro não interfere — Quando há compostos de ferro que tenham sido dissolvidos pelo contacto com ClH conc, depois de se introduzir o papel em OHNa, forma-se (OH)₃Fe acastanhado que não interfere com a pesquisa de Mg.

MAGNESITE E DOLOMITE

Diferenciação

I — Método de pesquisa — Reacção sobre o mineral.

Reagentes { N.º 7 Difenilcarbazida OHNa ~ 0,1N

Condições - Meio alcalino.

Técnica — 1) Colocar 1 mg. de minério finamente pulverizado, num tubo de centrifugação.

Juntar 1 gota de OHNa O.IN e 1 gota de reagente n.º 7; aquecer levemente.

- 2) Ao fim de 5 minutos esgotar o líquido com uma pipeta capilar e substituí-lo por água quente. Lavar o pó por este processo até que as águas de lavagem sejam incolores.
- 3) Observar agora o minério.

No caso de se apresentar fortemente corado-(rosado) trata-se de magnesite.

Caso contrário trata-se de dolomite ou material estranho.

Confirmação de Dolomite Sobre uma lâmina de Pt, aquecer ao rubro alguns mg. do minério (a fim de destruir o carbonato complexo).

Repetir a reacção anterior; se agora der positivo o mineral é dolomite.

MANGANÉS

I - Método de pesquisa - Dissolução seguida de reacção.

 $\begin{array}{c} \textit{Reagentes} \; \left\{ \begin{array}{l} \text{N.° 11 Solução saturada de NO}_{3} \text{Ag} \\ \text{N.° 30 OHAm} \sim 3 \text{N} \end{array} \right. \end{array}$

Condições — Meio amoniacal; ausência de halogeneos.

Técnica — 1) Dissolver alguns mg. de minério em ClH ou NO₃H conc. (conforme os casos. Cadinho ou porcelana).

Quando se empregar ClH: evaporar o ácido à secura, retomar por gotas de NO₃H conc. (1 gota de cada vez) até eliminar todo Cl⁻.

- Dissolver com 2 gotas de água; encher 1 pipeta capilar com o líquido sobrenadante e colocar 1 gota sobre papel Whatman.
- Juntar 1 gota de OHAm ~ 3N e 1 gota de soluto amoniacal de NO₃Ag. Aquecer levemente.

Em presença de Mn forma-se coloração castanha ou pp. negro.

Interferências — Hidróxidos corados (por mascararem a cor).

Halogéneos; cromatos.

Sensibilidade [0,05 \gamma Mn++ de reacção] 1/1.000.00

2.º processo

Reagentes Soluções de NO₃Ag a 01 °/_o Persulfato de amónio sólido Ácido sulfúrico conc.

Condições — Ausência de halogéneos.

Tecnica — 1) Proceder como na alínea 1) da técnica anterior.

2) Do líquido sobrenadante tirar 1 gota com uma pipeta capilar e colocá-la um cadinho de porcelana. Juntar 1 gota de SO₄H₂ conc. e 1 gota de soluto, de NO₃Ag e alguns miligramas de persulfato sólido, agitar e aquecer levemente.

Em presença de manganés forma-se coloração rósea-violácea devido ao anião Mn O₄.

Sensibilidade { 0,1 γ Mn++ da reacção { 1/500.000

Interferências — Aniões que reajam com Ag+. Iões fortemente corados (por mascararem a cor).

Em presença de CrO₄= pode proceder-se do seguinte modo:

Partindo do líquido neutro ou acético, pp. CrO₄ com Ag+ (num tubo de centrifugação). Do líquido sobrenadante tirar uma gota da solução e proceder como em (2), etc.

MOLIBDÉNIO

A) Aplicação dos compostos de Mo que por ataque não formam molibdatos:

Método de pesquisa — Dissolução seguida de reacção.

Reagentes { N.º 33 — ClH conc. N.º 15 — Tocianeto de amónio N.º 14 — Tiosulfato de sódio

Condições — Mo no estado trivalente (preferência Cl₃Mo)

Técnica — 1) Dissolver (1) o minério em ClH conc.;

evaporar um pouco o excesso do ácido.

2) Passar para a placa uma gota da solução; juntar uma gota duma solução conc. de S₂O₃= e imediatamente (2) a seguir uma gota de solução SC_yAm; agitar com uma vareta.

Na presença de Mo, aparece coloração carmezim ou cor de flor de olaia.

Interferências — Os tungstatos interferem quando da redução por S₂O₃= dando cor azul (ver W) juntar tartarato para impedir a reacção.

 Deve juntar-se ràpidamente o SCy a seguir ao S₂O₃= porque este leva fàcilmente a redução aos óxidos castanhos de Mo.

Se existir muito Mo, díluir a solução porque se torna impossível evitar a formação dos óxidos.

 B) Aplicação aos compostos de molibdénio no estado de molibdatos.

Método de pesquisa — Dissolução (com NO₃H) seguida de reacção sobre papel ou sobre placa

 $Reagentes \left\{ egin{array}{ll} {
m Papel \ de \ xantogenato \ de \ c\'{a}dmio.} \\ {
m CIH} \, \sim \, 2{
m N} \end{array} \right.$

Condições — Meio neutro ou levemente ácido (clorídrico).

Técnica — 1) Atacar o minério pulverizado ou não
(conforme os casos, com NO₃H conc.)

Alguns mg em cadinho de porcelana,

- 2) Evaporar o excesso do ácido; juntar uma gota de OH₂. Encher uma pipeta capilar com a solução e aplicá-la sobre o papel de xantogenato de cádmio. Expor aos vapores de amoníaco para neutralizar o excesso do ácido.
- Juntar 1 ou 2 gotas de CIH ~ 2N.
 Em presença dos molibidatos aparece ao fim de um minuto cor rosada que se

ao fim de um minuto cor rosada que se vai acentuando progressivamente.

Nota — Também se pode fazer a reacção sobre placa e juntar xantogenato de potássio sólido. Em presença de grandes quantidades de molibdato formam-se gotas oleosas negras sobrenadando o líquido.

NIQUEL

I — Método de pesquisa — Dissolução seguida de reacção.

Reagentes $\left\{ \begin{array}{l} N.^{\circ}~36~Dimetiglióxima~(solução~alcoólica~a~1~^{\circ}/_{\circ}) \\ N.^{\circ}~30~OHAm \sim _{3}N \end{array} \right.$

Condições — Meio neutro amoniacal ou acético; auséncia de oxidantes enérgicos (NO₃H).

Técnica — 1) Fundir ou dissolver em ácido alguns mg. de minério. Se se empregar NO₃H, eliminá-lo evaporando com gotas de ClH conc. (1 de cada vez). 2) Impregnar papel Watman numa solução levemente aquecida, de reagente n.º 36 e deixar secar.

3) Evaporar o ácido (do ataque) à secura e retomar por água.

Encher uma pipeta capilar com o líquido sobrenadante e aplicá-la sobre papel primitivamente preparado.

Expor aos vapores de amoníaco ou juntar 1 gota de amónia.

Em presença de Ni aparece cor vermelho-rosada.

Sensibilidade { 0,015 γ Ni da reacção { 1/3.300.000

Interferências - Alguns iões interferem:

Fe++ dando coloração análoga ao Ni (sem interesse no caso dos minérios). Co++ e Fe+++ conjuntamente dão precipitado ou coloração vermelho-

-acastanhado que mascaram Ni.

Em presença de grande quantidade Co e Fe pode proceder-se do seguinte modo:

Num tubo de centrifugação deitar ~ 1/2 da solução e juntar OHAn para precipitar Fe e Co (parcialmente), do líquido sobrenadante tirar 1 gota com pipeta capilar e aplicá-la sobre o papel dimetilglióxima. Deixar secar; mesmo com pequenas quantidades de Ni aparece mancha rosada contrastando com a cor acastanhada devida ao cobalto.

Se a reacção for feita na placa, ao fim de algum tempo, observa-se ligeiro precipitado *rosado* sobrenadando o líquido acastanhadado.

II — Método de pesquisa — Electrografia.

Electrólilos — Papéis de ClK e dimetilglióxima.

Técnica — 1) No dispositivo de electrólise colocar papel de ClK (humedecido) e papel embebido em dimetilglióxima o qual se humedece com OHAn ~ 3N. Sobre este colocar um fragmento de minério e deixar passar a corrente ~ 2 minutos.

 Em presença de Ni forma-se sobre o papel manchas vermelho-rosadas; a par destas podem notar-se manchas vermelho-acastanhadas devido a cobalto e ferro.

SILICATOS

Método de pesquiza — Ataque e reacção

 $\label{eq:Reagentes} \left\{ \begin{array}{l} N.^{\circ} \quad 3 - Benzidina \\ N.^{\circ} \quad 2 - Molibdato \ de \ amónio \\ N.^{\circ} \quad 28 - Acetato \ de \ sódio \\ N.^{\circ} \quad 18 - Fluoreto \ de \ Na \\ N.^{\circ} \quad 35 - SO_4H_2 \ conc. \end{array} \right.$

TECNICA 928 Condições - Ausência de água

Técnica — 1) Num cadinho de platina 1 mg. de minério; juntar ~ 1 mg. de FNa e 1/2 ml de SO₄H₂ conc.

Aquecer o cadinho tapado com um vidro de relógio parafinado inferiormente, contendo em suspensão 1 gota de água.

 Grandes quantidades de SiO₂ dão a turvação da gota.

Pequenas quantidades: Passar a gota para o godet arrastando-a com água. Juntar gotas de molibdato de Am.º (se ficar amarelo é suficiente para o reconhecimento) e 1 gota de benzidina.

Em seguida reagente 28 até ao dobro do volume inicial.

Em presença de SiO₂ aparece cor azul.

SULFURETOS

Método de pesquisa – Acção directa do reagente sobre o minério

Reagentes - N.º 1 - Iodo-azoteto de sódio.

 A) Grandes quantidades em substâncias não muito compactas.

Técnica — 1) Colocar sobre o minério 1 gota de reagente.

Em presença de S desenvolvem-se imediatamente bolhas gasosas, visíveis à simples vista ou melhor à lupa; o reagente perde a cor amarela do iodo.

B) Pequenas quantidades — (ou substâncias muito compactas).

 Pulverizar bem o minério e colocar no fundo dum tubo de centrifugação alguns grão de pó.

2) Juntar 1 gota de reagente e aquecer levemente.

Junto às paredes do tubo vê-se litarem-se bolhas gasosas que denunciam sulfuretos.

Interferências - Aniões selenídrico e telurídrico, o enxofre livre não dá esta reacção.

Sensibilidade $\begin{cases} 0.03 \text{ } \gamma \text{ S}=\\ da \text{ reacção} \end{cases}$ 1/100.000

TITÂNEO

I — Método de pesquisa — Dissolução seguida de reacção

 ${\it Reagentes} \left\{ \begin{array}{l} N.^{\circ}~12-\text{\'Acido cromotr\'opico (s\'olido)} \\ N.^{\circ}~35-SO_{4}H_{2}~conc. \end{array} \right.$

Condições - Ausência de NO2H

Técnica – 1) Tratar alguns mg de minério pulverizado com 3 gotas de SO₄H₂ conce aquecer até fumos brancos.

2) Deixar esfriar e juntar grãos de ácido cromotrópico sólido.

Em presença de Ti forma-se cor

Interferências — A reacção é específica; apenas quando haja muito Fe⁺⁺⁺ e WO₄[≡] é preciso reduzi-los a sais osos (empregar Cl₂Sn em solução clorídrica).

Sensibilidade 5 γ de TiO₂ da reacção 1/10.000

II - Método de pesquisa - Electrografia

 $Electr\'olitos \left\{ \begin{array}{l} {\rm Papel~de~ClK} \\ {\rm Papel~de~\'acido~cromotr\'opico~(em~sol.~de} \\ {\rm SO_4H_2 \sim 2~N)} \end{array} \right.$

Técnica — 1) Colocar no dispositivo de electrólise os papéis e dispor uma camada fina de minério grosseiramente pulverizado sobre eles.

Deixar passar a corrente 2-5 min.

 Nos pontos correspondentes ao ataque do minério aparecem sobre o papel manchas avermelhadas.

Nota — Com minérios fàcilmente atacáveis, basta o processo «sandwich» — Obtém-se imediatamente manchas características.

TUNGSTÉNIO

I — Método de Pesquisa - Fusão seguida de reacção.

Reagentes N.º 19 Cloreto estanoso
N.º 33 ClH conc.
N.º 15 Tiocianeto de Amónio

Condições — Meio fortemente clorídrico

Técnica – 1) Fundir alguns mg. de min. com O₂Na₂ (cadinho de prata).

 Dissolver em ClH conc. Com uma pipeta capilar tirar 1 gota de líquido.

3) Sobre papel Whatman colocar 1 gota de ClH conc. seguida da gota do líquido a ensajar.

Juntar agora 1 gota de Cl₂Sn. Em presença de WO₃ aparece cor azul.

Se existir — 4) Juntar 1 gota de SCy. Em volta do do centro azul (tungsténio) aparece mancha vermelho-alaranjada (Mo).

a qual desaparece com ClH conc

1) A reacção pode-se fazer doutro modo.

2) A solução obtida (ClH conc.) juntar gotas de Cl₂Sn (mesmo no cad.).

Em presença de quantidades apreciáveis de W aparece imediatamente cor azul.

URÂNIO

I — Método de pesquisa — Dissolução seguida de reacção

Reagentes { Papel de FeCy₆K (1) Amónia ~ 3N

Condições — Solução neutra ou acética.

- Técnica 1) Fundir alguns mg. de min. com CO₃KNa + O₂Na₂.
 - 2) Dissolver em ClH conc. e evaporar à (evaporar bem o ácido ou neutralizá-lo

com OHAm e juntar 1 gota de ácido

pouco Fe

- Quando há [3) Deixar esfriar, juntar 1 gota de água, encher 1 pipeta capilar e aplicar sobre papel de FeCy6K. Uma mancha castanha indica U (na ausência de Cu).
 - 4) No caso de se ignorar se existe ou não Cu, (2) apoiar sobre a mancha uma pipeta capilar com OHAm.

No caso de Urânio a mancha passa a amarela.

No caso de Cobre a mancha passa a azul.

5) Quando houver muito Fe ou Cu precipitá-los, a quente com CO3= e do líquido límpido tirar 1 gota, acidificá-la com ácido acético e proceder como em 3.

Sensibilidade [0,92 y U da reacção | 1/54.000

ZINCO

I – Método de pesquisa – Dissolução seguida de reacção

Reagentes N.° 5 -- Tiocianeto de mercúrio N.° 6 -- Solução diluída do cobalto N.° 18 -- Floreto de sódio (sólido) N.° 33 -- ClH conc.

Condições — Meio fortemente clorídrico; ausência ou pequena concentração de NO2H.

Técnica — 1) Colocar sobre papel Whantman 1 gota de ClH conc.; espalhar sobre este uma camada de minério fortemente pulverizada; apertar entre duas lâminas de vidro.

Deixar alguns minutos (2-5).

- 2) Sacudir o pó do papel o mais possível; fazer a reacção no verso do papel.
- 3) Colocar de novo o papel sobre lâmina de vidro, juntar alguns mg de FNa

(1) Feito na ocasião.

sólido e agitar com uma vareta até toda a cor amarelo-esverdeada (Fe+++) desaparecer.

4) Juntar 1 gota da solução de cobalto e 1 gota da solução de tiocianeto.

Agitar com uma vareta durante 2 mintuos.

Ao fim de 2 - 10 minutos aparece côr azul que se acentua progressivamente.

Interferências — Reacção quase específica.

O cobalto em grandes quantidades interfere dando a mesma cor azul.

O cobre em presença do zinco dá precipitado de coloração azul-violeta (característica do zinco; sendo assim é desnecessário juntar a solução de cobalto).

Em presença de muito cobalto pode proceder-se do seguinte modo:

Num tubo de centrifugação deitar ~ 1/2 ml da solução e juntar OHNa em excesso (até dissolver todo (OH)2Zn). Tirar 1 gota da solução límpida para o godet da «placa de gotas»; neutralizar com ClH conc. e juntar ClH em excesso; juntar então 1 gota reagente N.º 5 e depois 1 gota de reagente N.º 6; agitar com uma vareta, etc.

Sensibilidade [0,03 7 Zn++ da reacção 1/300. CO

II - Método de pesquisa - Electrografia

Reagentes - Os mesmos que anteriormente

Electrólitos - ClK, tiocianeto de mercúrio com FNa em solução (papéis de).

Tecnica - 1) Embeber um papel com uma solução de tiocianeto de Hg; colocar sobre ele alguns mg de FNa sólido e agitar com 1 vareta até se dissolver, juntar 1 gota de ClH.

- 2) Estender sobre o papel uma camada de minério (sem ser finamente pulve-
- 3) Colocar o papel no dispositivo de electrólise e deixar passar a corrente 5 min.
- 4) Sacudir o pó e fazer a reacção no verso do papel.

Juntar ClH conc., se parece cor vermelha de (SCy)3Fe juntar mais FNa até tudo se dissolver.

5) Proceder com em (4) do processo anterior.

⁽²⁾ Dada pequena sensibilidade da reacção para o urânio, em ação às do cobre e ferro, quando houver pouco urânio é preferível roceder como na alínea (5).

QUADRO N.° 3

Pesquisa dos principais elementos nalguns minerais segundo os métodos e técnicas da micro-análise (1)

Minerais	C	Composição	Método de ataque .	«Tomas»	Tempo	Reagente empregado	Nitidez da gota	Caracte	erização	ODCEDAN CÂTO
	Quali- tativa	Percentagem	metodo de ataque	para a Análise	de Ataque		mancha coradas	Positiva	Negativa	OBSERVAÇÕES
Antimonite	Sb	Sb = $56,43^{0}/_{0}$	Processo «sandwi c h» (contacto acido — NO ₃ H)	Alguns mg (camada de grão grosseiro)	~ 2 min	Rodamina B	Mancha muito nítida	Sb		
			Electrografia	»	~ 2 min	»	»	Sb		
	Pb	Pb n.d.	Dissolução em CIH	Alguns mg		Benzidina	<u> j</u>	_	Pb	
	Zn	Zn — n.d.	Dissolução em CIH	*		Tiocianeto de mercúrio + FNa	Leve coloração	Zn		
7	s=	S — n d.	Reagente sobre o minério	»	Instantaneo	Iodo + Azoteto de sódio	Fortemente positivo	s = 1	- = -	
	As	As — n.d.	Electrografia	Pedaço n. pulv.	~ 3 min	Papel de SZn	Mancha nítida	As		
	Fe	Fe - n.d.	»	»	~ 1 min	Papel de Fe Cy ₆ Zn ₂	»	Fe	- × 1	4 :- : :
Arsenopirite	Sb	Sb — n.d.	Dissolução em NO₃H + CIH	Alguns mg.		Rodamina B			Sb	
	Zn	Zn — n.d.	»	»		Tiocianeto de mercúrio + FNa	-		Zn	
	s=	S-n.d.	Reagente sobre o minério	»	Instantaneo	Iodo + Azoteto de sódio	Fortemente positivo	s=		
France Co	AI	Al ₂ O ₃ = 38,81 $^{0}/_{0}$	»	~ I mg		Quinalizarina + Ac.º Acético	Coloração intensa	AI		
Bauxite	Si O ₂	Si $O_2 = 28,39^{0/0}$	Ataque com FH (FNa + SO ₄ H ₂)	Alguns mg		Reacção da gota de água + benzidina	»	Si O ₂		
	Ti	Ti - n.d.	Ataque com SO ₄ H ₂	»		Acido cromotrópico sólido		•	Ti	
	Fe	Fe — n.d.	Fusão com CO ₃ Na K	»		Papel de Fe Cy ₆ Zn ₂	Mancha muito intensa	Fe		
	Be	Be = 13,0 0/0	Fusão com OH Na	»		Quinalizarina	Intensa coloração	Be		
		De = 13,0 70	Electrografia	Camada de grão grosseiro		>	»	Be		
	Mg	Mg — n.d.	Fusão com OH Na (no mesmo ensaio anterior)	Alguns mg		»	<u> </u>		Mg	
Berilo	AI	AI — n.d.	»	»		Quinalizarina + Ac.º Acético	Intensa coloração	AI		
	Mn	Mn — n.d.	*	»		Nitrato de prata Amoniacal	Tenue coloração	Vestig. Mn		
1	Fe	Fe — n.d.	» .	»		Papel de Fe Cy _ô Zn ₂	Tenue coloração	Vestig. Fe		

⁽¹⁾ a) Neste quadro e nos seguintes, vão apenas mencionados os métodos de ataque e o principal reagente utilizado na caracterização, não sendo mencionados os processos de «separação» empregados (quando esta foi necessária), devendo entender-se que as pesquisas foram feitas segundo as técnicas atraz indicadas.

b) Cada resultado corresponde, na grande maioria dos casos, a várias pesquisas feitas ou sobre vários fragmentos da mesma amostra ou de amostras diversas.

	C	omposição	Mary Laboratory	«Tomas»	Tempo de Ataque	Reagente empregado	Nitidez da gota	Caracterização		OBSERVAÇÕES
Minerais	Quali- tativa	Percentagem	Método de Ataque	para a Análise			ou mancha coradas	Positiva	Negativa	OBSERVAÇÕES
	Zn	$SZn = 80,28 ^{0}/_{0}$	Processo «sandwich» (contacto ácido — CIH conc.)	Alguns miligramas Pequena camada de grão grosseiro	~ 2 min	Tiocianeto de mer <mark>cúrio</mark> + solução de cobalta	Mancha intensamente corada	Zn		
			Electrografia	Pequeno pedaço não pulverizado	~ 3 min	Papel de Tiocianeto de mer- cúrio + FNa (etc.)	»	Zn		
	Sb	$S_3Sb_2 = 3,88 {}^0/_0$	Contacto ácido (NO ₃ H)	Pedaço compacto	~ 3 min	Rodamina B	Coloração leve mas nítida	Sb		
	Pb	S Pb — 3,88 ° 0	Electrografia	Pedaço não pulverizado	~ 5 min	Papel de CrO₄Ba	_		Pb	
Blenda		3,00	Dissolução em CIH	Alguns miligramas	_	Benzidina	coloração acentuada	Pb		
	E	$Fe_2O_3 = 3,50^{0}/_{0}$	Electrografia	Pedaço não pulverizado	~ 3 min	Papel de FeCy ₆ Zn ₂	Mancha muito nítida	Fe		
	Fe		Dissolução em CIH (no mesmo ensaio da pesquisa de Pb)			>	>	Fe		
	SiO ₂	$SiO_2 = 8,29^{0/0}$	Ataque com FH (FNa + SO ₄ H)	Alguns mg.	_	Reacção da gota de água + Molibdato + benzidina	Intensa coloração	Si O ₂		
	S=	S= - n. d.	Reagente sobre o minério	Minério compacto	Instantâneo	Iodo-Azoteto de sódio (aquecido)	Fortemente positivo	S=		
	Cu	Cu — n.d.	Electrografia	Pedaço não pulverizado	~ 2 min	Papel de FeCy ₆ Zn ₂	>	Cu		
			*	>	~ 4 min	»			Fe	
Bornite	Fe	Fe — n.d.	Dissolução em NO₃H	∼ı mg		»	Fortemente positivo	Fe		
	S=	S= n.d.	Reagente sobre o minério	Minério pulverizado ~ 1 mg	Instantâneo	Iodo-Azoteto de sódio (aquecido)	,	S=		
	Cu	Cu — n.d.	Electrografia	Camada de grão grosseiro	~ 5 min	Papel de FeCy ₆ Zn ₂	_	_	Cu	
			Dissolução em NO₃H + CIH	Alguns mg		»	Regularmente positivo	Cu		
Bornonite	Pb	Pb - n.d.	(mesmo ataque anterior)	»		Benzidina	Intensa coloração	Pb	-	
	Sb	Sb — n.d.	»	>		Rodamina B	>	Sb		
	S=	S=- n.d.	Reagente sobre o minério (pulverizado)	>	Ao fim de	Iodo-Azoteto de sódio (aquecido)	Fortemente positivo	S=		

Minerais	Composição			«Tomas»	Tempo		Nitidez da gota	Caracterização		ODCEDVA ÇĂ EC
Minerais	Quali- tativa	Percentagem	Método de Ataque	para a Análise	de Ataque	Reagente empregado	ou mancha coradas	Positiva	Negativa	OBSERVAÇÕES
	Cu	Cu — n.d.	Electrografia	Pedaço não pulverizado	~ 2 min	Papel de Ferrocianeto de zinco	Regularmente positivo	Cu		
	Fe	Fe — n.d.	(No mesmo ensaio anterior)	»	»	»	Intensa coloraç <mark>ão</mark>	Fe		
Calcopirite	Pb	Pb—n.d.	Electrografia	»	»	Papel de CrO ₄ K ₂	»	Pb		
	S=	$S^{=}$ -n.d.	sobre o minério (pulverizado)	Alguns mg	Imediato	Iodo-Azoteto de sódio	Fortemente positivo	S=		
	Cu	Cu — n.d.	Electrografia	Pedaço não pulverizado	~ 1/2 min	Papel de Fe Cy ₆ Zn ₂	Mancha intensamente corada	Cu		
Calcosina	S=	S=-n.d.	Reagente sobre o minério (pulverizado)	Alguns mg	Instantâneo	Iodo-Azoteto de sódio	Fortemente positivo	S=		
Q	Sn	$Sn = 72,75^{-0/0}$	Fusão com CyK + CO ₃ NaK	~ 1 mg	_	Papel de Cacotelina	Mancha intensamente corada	Sn		
Cassiterite	Fe	Fe — n.d.	Electrografia	Pedaço não pulverizado	~ 4 min	Papel de FeCy ₆ Zn ₂	»	Fe		
G 11	Cu	Cu — n.d.	Electrografia	Pedaço não pulverizado	~ 1/2 min	Papel de FeCy ₆ Zn ₂	Mancha intensamente corada	Cu		
Covelina	S=	S=_n.d.	Reagente sobre o minério (pulverizado)	Alguns mg	Instantâneo	Iodo-Azoteto de sódio	Fortemente positivo	S=		
	Cr	$Cr_2 O_3 - 46,600/_0$	Fusão com O₂Na₂.I	~ 2 mg	_ '	Difenilcarbazida	Intensa coloração	$Cr(CrO_4^{=})$		
	,		No mesmo ensaio anterior			Quinalizarina+Ácido acético	»	Al		
	Al	Al ₂ O ₃ — 19,30 ⁰ / ₀	Electrografia	Fina camada de grão grosseiro	~ 5 min	Papel de Quinalizarina	Mancha leve mas nítida	Al		
			Electrografia	»	~ 5 min	Papel de FeCy ₆ Zn ₂			Fe	
Cromite	Fe	FeO — 14,80 ⁰ / ₀	Processo «sandwich» (CIH con.)	»	~ 1 min	»	Mancha intensamente corada	Fe		
	Mg	MgO — 7,65 ⁰ / ₀	Electrografia	»	~ 3 min	Papel de Quinalizarina	»	Mg		
	Mn	MnO — 2,41 ⁰ / ₀	Não pesquisado		-			_	_	
	Ca	CaO — 1,75 ⁰ / ₀	Não pesquisado	_	_				-	
	Si O ₂	SiO ₂ — 11,56 ⁰ / ₀	Ataque por FH (FNa + SO ₄ H ₂)	Alguns mg		Reacção da gota de água + Malibdato + benzidina	Intensa coloração	Si O ₂		
Dolomite	Mg	Mg — n.d.	Reagente sobre o minério (pulverizado)	»		Difenilcarbazida			Mg	Diferenciação da Magnesite
_ 010111100	mg	mg — m.u.	Minério calcinado + reagente	»		»	Resíduo intensamente corado	Mg		Magnesite (ver técnica)

	С	omposição	Método de ataque	«Tomas»	Tempo de Ataque	Reagente empregado	Nitidez da gota ou mancha coradas	Caracterização		opernyl căre
Minerais	Quali- tativa	Percentagem		para a Análise				Positiva	Negativa	OBSERVAÇÕES
	Со	Co-n.d.	Electrografia	Pedaço não pulverizado	~ 1/2 min	Papel de Tiocianeto de mercúrio + FNA	Intensa coloração	Со		Não foi necessário juntar $Z{\rm n}^{++}$
		12	Dissolução em NO₃H	~ 2 mg	-	»	» .	Со		
	N	N	Electrografia	Pedaço não pulverizado	~ 1/2 min	Papel de dimetilglióxina + OHAm	Manchas de intensa colo- ração (misturadas com manchas de Co + Fe)	(Co+Fe)		
Esmaltite- cloantite	Ni	Ni — n.d.	Dissolução em NO₃H (mesmo ensaio de Co)	~ 2 mg		»	Manchas de intensa colo- ração (separação capi- lar de Co)	Ni		
(origem desco-	Sb	Sb — n.d.	»			Papel de Rodamina B		-	Sb	
nhecida)	Cu	Cu — n.d.	Electrografia	»	~ 2 min	Papel de FeCy ₆ Zn ₂		-	Cu	Confirmado pela dissolução
	Zn	Zn — n.d.	Dissolução em NO₃H	~ 2 mg		Tiocianeto de mercúrio (depois de separação do Co)	Tenue coloração	Vestígios Zn		
	Pb	Pb — n.d.	Dissolução em NO₃CIH	~ 2 mg		Benzidina			Pb	
	As	As — n.d.	Electrografia	Pedaço não pulverizado	~ 2 min	Papel de Cl ₂ Sn	Mancha de intensa colo- ração	As		
	s=	S = n.d.	Sobre o minério (pulverizado)	~ 2 mg	Imediato	Iodo-Azoteto de sódio	Nítido	S=		
	Pb	Pb — n.d.	Electrografia	Pedaço não pulverizado	~ 4 min	Papel de CrO₄Ba	Mancha muito nítida	Pb		
Galena			Dissolução em CIH	~ 1 mg		Benzidina	Intensa coloração	Pb		
	s=	s=-n.d.	Reagente sobre minério (não pulverizado)		Instantâneo	Iodo-Azoteto de sódio (aquecido)	Fortemente positivo	s=		
	Pb	Pb — n.d.	Dissolução em CIH	~ 2 mg		Benzidina	Intensa coloração	Pb		
	Ni	Ni — n.d.	(ataque anterior)	*		Dimetilglioxima + OHAm separação capilar de Co	Mancha nítida	Ni		
Galena	Со	Co — n.d.	»	»		Tiocianeto de mercúrio + Zn ^{+ +}	»	Со		
	s=	S = - n.d.	Reagente sobre minério (pulverizado)	»	Instantâneo	Iodo-Azoteto de sódio	Fortemente positivo	s=		
	Al	Al — n.d.	Fusão com CO₃NaK	»	•	Quinalizarina (+ Ac.º Acet.º)	Intensa coloração	Al		
Granada	SiO ₂	SiO ₂ — n.d.	**************************************	»		Reacção da gota de água + molibdato + benzidina	» _	SiO ²		
almandina	Mg	Mg — n d.	»	*		Quinalizarina	>	Mg		
	Fe	Fe — n.d.	>	»		FeCy ₀ Zn ₂	»	Fe		
	Mn	Mn —	>	»			an and			

Minerais		Composição	Método de ataque	«Tomas»	Tempo de Ataque	Reagente empregado	Nitidez da gota ou mancha coradas	Caract	erização	
	Quali- tativa	Percentagem		para a Análise				Positiva	Negativa	OBSERVAÇÕES
	N:	N:	Fusão com CO ₃ Na K + O ₂ Na ₂	Alguns mg		Dimetilglióxima + OHAm	Intensa coloração	Ni		
	Ni	Ni — n.d.	Processo «sandwich» (CIH)	Camada de grão grosseiro	~ 3 min	»	>	Ni	1 .	
Garnierite	Mg	Mg. — n.d.	Na fusão anterior			Quinalizarina	Intensa coloração	Mg		
(origem des- conhecida)	Al	Al — n.d.	>			Quinalizarina + Ác.º Acético	»	Al		
	Cr		•			Difenilcarbazida			Cr (CrO ₄ =)	
	Si O ₂	Si O ₂ — n.d.	Ataque por FH (FNa — SO ₄ H ₂)	Alguns mg		Reacção da gota de água + Molibdato + benzidina	Intensa coloração	Si O ₂		
	Ti	Ti — n.d.	Ataque com SO ₄ H ₂	Camada de grão grosseiro		Ácido cromotrópico sólido	»	Ti		
Ilmenite	Fe	Fe — n.d.	Processo «sandwich» (CIH)	Alguns mg	~ I min	Papel de Fe Cy _ú Zn ₂	Mancha muito nítida	Fe	-1	
	Al	Al — n.d.	Fusão com S ₂ O ₇ K ₂	»		Quinalizarina + Ác.º Acético	Gota de leve coloração	Al		
	Sb	Sb — n.d.	Processo «sandwich» (CIH)	Pequenos farrapos	~ t min	Rodamina B	Mancha intensamente corada	Sb		
Jamesonite	Pb .	Pb — n.d.	Dissolução em CIH	»		Benzidina	Intensa coloração	Pb		
	S=	S = -n.d.	Reagente sobre o minério		Imediato	Iodo-Azoteto de sódio	Fortemente positivo	s=		
Magnetite	Fe	Fe — n.d.	Electrografia	Pedaço não pulverizado	~ I min	Papel de Fe Cy ₆ Zn ₂	Mancha muito nítida	Fe		
Malaquite	Cu	Cu — n. d.	Contacto ácido (papel de $FeCy_6Zn_2 + CIH$)		$\sim 1/2$ min	,	Mancha intensamente corada	Cu		
		Mo — n.d.	Ataque por vapor ácido (CIH)		~ 4 min	Tiocianeto de amónio + Tio- sulfato de sódio	,	Мо		- 14
Molibdenite	Мо	Mo — n.d.	Ataque por vapor ácido NO₃H		~ 4 min	Papel de xantogenato de potassio	»	Мо		Caracterização feita directamente sobre pequena inclusão do mineral em quartzo
	s=	S = -n.d.	Reagente sobre o minério		Imediato	Iodo-Azoteto de sódio (aquecido)	Fortemente positivo	S=		do mineral em quartzo
	Fe	Fe — n.c.	Electrografia	Pedaço não pulverizado	~ ¹ / ₂ min	Papel de FeCy ₆ Zn ₂	Mancha intensamente corada	Fe		
	Cu	Cu — n.d.	Dissolução em NO₃H + ClK	Alguns mg		»	Mancha tenue	Cu		
Pirite	Sb	Sb — n.d.	•	,		Rodamina B	Leve coloração	Sb		
	Zn	Zn — n.d.	•	»		Tiocianeto de mercúrio + Co ⁺⁺	Mancha de leve coloração	Zn (Vestigios)	5-1	
	S=	S = - n.d.	Reagente sobre o minério		Instantâneo	Iodo + Azoteto de sódio (aquecido)	Fortemente positivo			

Minerais	Composição		Método de Ataque	«Tomas»	Tempo		Nitidez da gota	Caracte	erização	
Millerais	Quali- tativā	Percentagem	Metodo de Ataque	para a Análise	de Ataque	Reagente empregado	ou mancha coradas	Positiva	Negativa	OBSERVAÇÕES
		· ·	Dissolução em CIH	∼ı mg	_	Benzidina	Intensa coloração	Mn		
Pirolusite	Mn	$Mn = 42,97^{0/0}$	Dissolução em NO ₃ H	∼ı mg		Nitrato de prata Amoniacal	»	Mn		
	Fe	Fe — n.d.	Contacto ácido — (CIH)		~ I min	Papel de FeCy ₆ Zn ₂	»	Fe		
Siderite	Fe	Fe - n.d.	Contacto ácido papel de FeCy ₆ Zn ₂ + CIH)		~ 1 min	>	»	Fe		
	Cu	Cu - n.d.	Electrografia	Pedaço não pulverizado	$\sim 1/2$ min	»	»	Cu		,
	As	As — n.d.	»	»	~ 2 min	Papel de Cl ₂ Sn	Mancha muito nítida	As		
Monomite	Sb	Sb — n.d.	Dissolução em NO ₃ H + CIH	Alguns mg.		Rodamina B	Intensa coloração	Sb		
Tenantite	Zn	Zn — n.d.	»	»		Tiocianeto de mercúrio + FNa	Indeciso		Zn?	
	Fe	Fe — n.d.	»	» »		Tiocianeto	Intensa coloração	Fe		
	S=	S=- n. d.	Reagente sobre o minério	-	Imediato	Iodo-Azoteto de sódio	Fortemente positivo	S=		
	Cu	Cu — n.d.	Electrografia	Pedaço não pulverizado	~ 1/2 min	Papel de FeCy ₆ Zn ₂	Mancha muito nítida	Cu		
	Sb	Sb-n.d.	»	*	~ 2 min	Papel de Rodamina	»	Sb		
		50 — II.d.	Contacto ácido (NO3H)		~ 2 min	»	»	Sb		
	Zn	Zn — n.d.	Electrografia	Pedaço não pulverizado	~ 2 min	Tiocianeto de mercúrio + FNA	»	Zn		
Tetraedrite			Dissolução em NO ₃ H + ClH	Alguns mg		»	»	Zn		
	Fe	Fe — n.d.	Electrografia	Pedaço não pulverizado	~ 5 min	Papel de FeCy ₆ Zn ₂			Fe	
			Dissolução em NO ₃ H + CIH (no mesmo ensaio anterior)	Alguns mg		»	Mancha leve mas nítida	Fe		
	Pb	Pb - n.d.	. »	»		Benzidina			Pb	
	Mn	Mn — n.d.	»_	>		»	-		Mn	
	s=	S= n.d.	Reagente sobre o minério (pulverizado)	»	Instantaneo	Iodo-Azoteto de sódio	Fortemente positivo	s =		
	Pb	Pb - n.d.	Dissolução em NO₃H + CIH	»		Benzidina	Mancha nítida	Pb		
Zinkenite	Sb	Sb — n.d.	Electrografia	Pedaço não pulverizado	~ 2 min	Rodamina B	»	Sb		
2111110111100			Contacto ácido (NO3H)	»	~ 2 min	»	»	Sb		
(Origem des- conhecida)	Zn	Zn-n.d.	Electrografia	»	~ 2 min	Tiocianeto de mercúrio + FNa	»	Zn		
			Contacto ácido CIH)	»	~ 5 min	»	»	Zn		
	s=	S=- n.d.	Reagente sobre o minério	-	Imediato	Iodo-Azoteto de sódio a quente	Fortemente positivo	s=		
Wolframite	W	$WO_3 - 65^{0/0}$	Fusão com CyK + CO ₃ KNa	Alguns mg.		Redução (óxidos azuis)	Intensa coloração	W		
wonramite	Sn	Sn — 1,25 ⁰ / ₀	»	»		Cacotelina	Mancha nítida	Sn		

Ao Senhor Prof. Eng. Herculano de Carvalho, Director do Laboratório de Química Analítica do I. S. T., a quem se deve a ideia e toda a boa vontade no sentido da organização e desenvolvimento duma secção de semi-micro análise, muito agradeço o ter-me concedido e facilitado as condições de trabalho necessárias à realização deste estudo (¹) e bem assim o interesse com que o acompanhou até à sua publicação.

Aos Senhores Prof. Eng. Ámílcar de Jesus e Eng. Luís de Saldanha, respectivamente Director e Assistente do Museu e Laboratório de Mineralogia do I. S. T., apresento os meus agradecimentos pelos esclarecimentos dados, indicações bibliográficas e amostras oferecidas.

Ainda, aos Senhores João Jantz e Azevêdo Lopes — da Secção Fotográfica da Associa-

(1) Estudo feito no Laboratório de Química Analítica do Instituto Superior Técnico. ção dos Estudantes do I. S. T. — agradeço a amabilidade das fotografias.

Laboratório de Química Analítica, Março de 1946.

BIBLIOGRAFIA

- (1) F. Feigl « Qualitative Analysis by Spot Tests»
 - Elsevier Amsterdam 1939
- (2) Low-Weinig-Schoder Technical Methods of Ore Analysis
 - New-York John Wiley 1939
- (3) Emich-Schneider Microchemical Laboratory Manual
 - New-York John Wiley 1932
- (4) C. B. Clark and H. W. Hermance Ind. Eng. Chem. (Anal. Ed.) 1937 — 9,292.
- (5) F. C. Hahn Microchemie 10,319 — 1931
- (6) C. B. Clark and H. W. Hermance Ind. Eng. Chem. (Anal. Ed.) 1938 10,591
- (7) R. H. Rastall Physico-Chemical Geology
- (8) Allmand and Ellingham —

 The principles of applied electrochemistry
 London 1924